Funções



Como um termo matemático, "função" foi introduzido por Gottfried Leibniz em 1694, para designar qualquer das várias variáveis geométricas associadas com uma dada curva; tais como a inclinação da curva ou um ponto específico da dita curva. Funções relacionadas às curvas são atualmente chamadas funções diferenciáveis e são ainda o tipo de funções mais encontrado por não-matemáticos. Para este tipo de funções, pode-se falar em limites e derivadas; ambos sendo medida da mudança nos valores de saída associados à variação dos valores de entrada, formando a base do cálculo infinitesimal. 

A palavra função foi, posteriormente, usada por Euler em meados do século XVIII para descrever uma expressão envolvendo vários argumentos (por exemplo, y = F(x)). Ampliando a definição de funções, os matemáticos foram capazes de estudar "estranhos" objetos matemáticos tais como funções que não são diferenciáveis em qualquer de seus pontos. Tais funções, inicialmente tidas como puramente imaginárias e chamadas genericamente de "monstros", foram já no final do século XX, identificadas como importantes para a construção de modelos físicos de fenômenos tais como o movimento Browniano. 

Durante o Século XIX, os matemáticos começaram a formalizar todos os diferentes ramos da matemática. Weierstrass defendia que se construisse o cálculo infinitesimal sobre a Aritmética ao invés de sobre a Geometria, o que favorecia a definição de Euler em relação à de Leibniz (veja aritmetização da análise). Mais para o final do século, os matemáticos começaram a tentar formalizar toda a Matemática usando Teoria dos conjuntos, e eles conseguiram obter definições de todos os objetos matemáticos em termos do conceito de conjunto. Foi Dirichlet quem criou a definição "formal" de função moderna. 

Na definição de Dirichlet, uma função é um caso especial de uma relação. Relação é um conjunto de pares ordenados, onde cada elemento do par pertence a um dos conjuntos relacionados. Nas relações não existem restrições quanto à lei de correspondência entre os elementos dos conjuntos, já para as funções é costume introduzir restrições. Na maioria dos casos de interesse prático, entretanto, as diferenças entre as definições moderna e de Euler são desprezáveis. 



Gottfried Leibniz

Euler

Dirichlet

 











Jakob Bernoulli

















Joseph Louis Lagrange 


Função é um dos conceitos mais importantes da matemática. Existem várias definições, dependendo da forma como são escolhidos os axiomas.


A maioria dos livros representa uma função através da notação:

f : D---Y

em que:

• D é um conjunto (chamado de domínio da função)

• Y também é um conjunto (que pode ou não ser igual a D, chamado de contra-domínio da função)

• f é uma lei que associa elementos do conjunto D ao conjunto Y, satisfazendo certos axiomas (abaixo delineados)

Se x é um elemento do domínio D, a função f : D---Ysempre associa a ele um único elemento f(x) do contra-domínio Y:



f : x pertence D ---y = f(x)

O gráfico da função é o conjunto de pares ordenados (x, f(x)), sendo um subconjunto de D x Y.

Alguns livros chamam de função o que foi chamado aqui de seu gráfico; em alguns casos, este gráfico nem precisa ser um conjunto, sendo uma classe.

Por outro lado, em alguns contextos são consideradas funções parciais (em que nem todos pontos do domínio D tem um valor f(x)) ou funções multivariadas (em que alguns pontos do domínio D podem ter mais de um valor f(x)).